
NBCE: A Neo4j-Based Content Extraction Algorithm in
Threat Intelligence Web Pages

Xiaoyang Li1,a, Mengming Li1,b, Rongfeng Zheng2,c, Anmin Zhou1,d and Liang Liu1,e,*
1College of Cybersecurity, Sichuan University, Chengdu, Sichuan, China

2College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan,
China

a. shawnlee97@163.com, b. limengmingx@sina.cn, c.qswhs@ foxmail.com
d. zhouanmin@scu.edu.cn, e. liangzhai118@163.com

*corresponding author: Liang Liu

Keywords: Main content extraction, threat intelligence, Neo4j, machine learning.

Abstract: Main content extraction is a widely used technique in web crawler, search
engines and so on to extract the main content of web pages as well as discarding other
complementary and decorative components. By extracting the main content, irrelevant and
redundant information can be ignored hence reducing the complexity of data processing and
improving the efficiency of further analysis. Among the existing methods tackling this
problem, solutions are designed to satisfy the different requirements of various groups. For
instance, companies specialized in content extraction always focus more on efficiency and
accuracy while others may concentrate more on practicality. In our proposed method, we
innovatively present a neo4j-based content extraction algorithm (NBCE) in threat
intelligence websites. The NBCE algorithm initially transforms the HTML source code into
the form of the tree structure. Then the triples extracted from the HTML tree are used to
construct a graph based on neo4j database. Finally, by deciding whether a node is the main
content node or not, the main content of the given web page can be extracted. The
availability of the proposed method is validated through a set of experiments conducted on
a threat-intelligence-related database.

1. Introduction

With the increasing complexity of World Wide Web, main content extraction, as an effective way to
select valuable information from web pages while ignoring other non-informative elements, deserves
great attention. However, the detailed requirements of web page content extraction vary from one
group to another. On the one hand, well-organized corporations with abundant human resources are
able to obtain large amounts of samples by advanced and accurate algorithms. On the other hand,
people in small businesses always concentrate more on specific applications and therefore require
task-oriented algorithms. For example, in cybersecurity, the extracted main content can be used to

2020 International Conference on Computer, Network, Communication and Information Systems (CNCI 2020)

Published by CSP © 2020 the Authors 339

collect and analyze low-level IOCs[7, 8] and high-level IOCs [11] utilized by hackers. Therefore,
main content extraction has turned out to be topical issues in cybersecurity.

What’s more, in the applications of general web crawler, a great of time is spent on parsing the
HTML structure. However, for other web crawlers aimed at particular fields, the workload is much
lower and they only have to be operated several times to satisfy the specific requirements. The
reason is that for those small-size enterprises, they don’t engage in web page analyzing but depend
on main content extracted from web pages to support follow-up operations. Therefore, more
attention will be focused on accuracy and practicality than processing time. Moreover, it is difficult
for them to design a context extraction algorithm based on annotated datasets on account of their
limited human resources and budgets. Concerning this, a reliable algorithm with simple rules and
high robustness is still sought after.

In this paper, we propose a simple but reliable neo4j-based content extraction algorithm (NBCE)
for the accurate and efficient extraction of cybersecurity-related web content. Our method consists of
three parts. In the first step, the HTML source code is transformed into a simple graph using neo4j
database according to its main structure. Then, specific rules are set to discard null nodes to reduce
redundancy. Finally, we approach the issue of content extraction as a binary classification question,
using machine learning on the set of nodes obtained from former steps to extract the unique main
content node, and thereby extracting the main content of the given web page. Moreover, we perform
10-folds cross-validation on a set of experiments to evaluate our proposed method.

The rest of the paper is organized as follows. Section II reviews the related works tackling the
task of main content extraction in web pages. In section III, the proposed NBCE algorithm is
explained in detail. The experiments to evaluate the performance of the novel method are described
in section IV. A brief conclusion and future explorations are presented in section V.

2. Related Work

Main content extraction, as an indispensable technique in many applications such as web content
aggregation, web crawler and search engine, has attracted the attention of numerous researchers.
There are many approaches aiming at this problem [5, 6, 14]. Kreuzer et al. [10] concluded a
taxonomy of some existing methods according to the type of information used for extraction: textual
information, visual information, DOM Tree and so on.

The main idea of regarding textual information as the chief gauge for content extraction is that the
text density of main content in a web page is much higher than other blocks. Weninger et al. [13] put
forward the Content Extraction via Tag Ratios (CETR), in which the ratio of characters and labels
inside each label is calculated to serve as a determinant. Besides, in [3] a quantitative linguistic
approach is employed with consideration of other HTML metrics such as link density.

Visual methods such as VIPS [4] and its derivatives [12] make use of the visual tree structure of
HTML to extract the main content. By dividing the web page into blocks, the ratio of text nodes and
leaf nodes in each block is calculated to decide whether it is the main content or not. In addition,
Burget et al. [9] combined CSS feature based on the VIPS algorithm, which improves the
performance to a certain degree.

Bar-Yossef et al. [2] regarded the template in web pag es as noise. They detected the
template by analyzing the DOM tree and further extracted the main content. Many other methods
based on the DOM tree [1, 15] have also turned out to be effective.

Although many studies have been conducted, few of them take the relation between HTML code
and graph into consideration as our proposed NBCE algorithm.

340

3. Method

We propose a Neo4j-Based Content Extraction algorithm (NBCE) to extract the main content from
the given threat intelligence web page. The proposed NBCE approach can be divided into HTML-
Neo4j transformation phase, compression phase and content extraction phase, as shown in Figure 1.
To transform HTML source code into a graph, we take advantage of the specific tree structure and
extract the triples necessary for constructing a graph in neo4j database. Based on the constructed
graph, we make further improvements by performing node-level and branch-level compression to
reduce redundancy. Finally, the processed nodes can serve as the input of machine learning to train
models and then extract the expected main content. The following subsections will describe these
steps in detail.

3.1. HTML-Neo4j Transformation

HTML always presents predominantly unstructured data with structured tags. Triples necessary for
constructing a graph can be extracted from related tags according to their hierarchical relationships.
Algorithm 1 and Algorithm 2 represent the details in the transformation phase. In algorithm 1, all the
nodes in the HTML tree are traversed to find the relation between two directedly connected nodes.
For the first-level tags under the original HTML source code, these tags and their corresponding
sequences are recorded for further employment. Then, similarly to the previous step, the subtags
under first-level tags and their sequences are also captured. Therefore, through traversing, the
relations between all nodes can be represented in the form of [sub_node, "sub_tag",[children,
number]], where “sub_tag” represents the relation between two directly connected nodes and
“number” represents the sequence of sub nodes. Furthermore, in algorithm 2, all the triple nodes in
the HTML can be aggregated. Hence the HTML source code can be transformed into the form of a
tree structure. Figure 2 displays a transformation sample in detail. Finally, RDF triples are extracted
and stored in neo4j graph database to construct the graph of the given web page. The standard
template of RDF triple used in neo4j database is described in Figure 3, where “src” and “dst”
represent different nodes in a graph while “r” represents the relation between two nodes as well as an
edge in a graph.

3.2. Node-level and Branch-level Compression

There exist two kinds of nodes connected directly to a null node in the generated graph, namely end
nodes and branch nodes. As we can see from Figure 4, node B without any child node is connected
to a null node and the null node in turn is connected to another null node. Therefore, node B can be
regarded as an end node. Whereas in Figure 5, node C is connected to a series of leaf nodes at one
end while connected to a null node at another. Hence it is defined as a branch node. On account of
the numerous null nodes brought about by HTML tags, we perform node-level and branch-level
compression in our proposed approach. The main idea of compression is discarding the unnecessary
null node to reduce redundancy. More specifically, in node-level compression, the null node
connected directly to an end node is discarded and the end note is then connected to the ancestor of
the null node. Similarly, in branch-level compression, the null node connected directly to the branch
node is also removed and its ancestor is connected to the branch node. The detailed procedures can
be seen in Algorithm 3.

By removing these redundant nodes, we eliminate the influence of data discretization brought
about by HTML tags. Furthermore, because of the particular structure of HTML, the nodes related to
similar topics are always connected to the same or adjacent nodes. Therefore, those nodes that

341

contain main content must be connected to the same node directly or within a certain distance, which
is the underlying principle of our approach.

Figure 1: Processing phases for main content extraction.

Figure 2: A sample of transforming HTML into the tree structure.

Figure 3: The standard template of RDF triple.

342

3.3. Main Content Extraction

After the compression phase, redundant null nodes are discarded. Generally, in a graph, large
amounts of nodes that contain main content may connect to a null node directly or within a certain
distance, and therefore, this node is defined as the main content node. More specifically, there is only
one content node in a web page. Besides, the content node extracted from a web page is
corresponding to all the tags containing the main content in HTML structure. Therefore, according to
the sequence recorded in the former steps, the main content can be recovered from the nodes
connected to the content node.

In this way, the problem of the main content extraction is then transformed into the problem of
main content node extraction. In our approach, we consider the issue as a binary classification
question hence the nodes can be classified into content nodes and non-content nodes. Traditionally,
this kind of binary classification questions can be solved by machine learning. Consequently in our
approach, we extract several distinct features between content and non-content nodes to perform
machine learning. The features we selected are based on the following rules to figure out whether the
null node is content node or not:

• The number of nodes connected directly to the null node.
• The average text length of the nodes connected directly to the null node.
Algorithm 1. Elstablish_triple_nodes
Input: HTML Source Code
Output: the tree structure of the given HTML
1 var_triple_node  first-level nodes
1 for sub_node in var_triple_node do
2 if not_hasChild(sub_node) then
3 continue
4 else
5 children_result = get_children_tags(sub_node)
6 number = 0
7 var_all_triple.append([sub_node,

"sub_tag",[children, number]])
8 number = number+1
9 var_all_triple =

elstablish_trip_nodes(children_result, var_all_triple)
10 end
11 end

Algorithm 2. Build_tree_structure
Input: HTML Source Code
Output: the tree structure of the given HTML
1 var_all_triple = []
2 var_triple_node = get_children_tags(html)
3 soup = BeautifulSoup(html)
4 for each triple_node in var_triple_node do
5 var_all_triple.append([soup, "sub_tag",

[triple_node, number]])
6 number = number+1
7 end
8 var_all_triple =

elstablish_triple_nodes(var_triple_node, var_all_triple)

343

Algorithm 3. End/branch compression
Input: all the nodes
Output: compressed nodes
1 for each node in end/branch node do
2 if nodeparent = null then
3 nodeparent = nodeparentparent
4 end
5 end

Figure 4: An example of end node.

Figure 5: An example of branch node.

On the one hand, the main content node always corresponds to more nodes due to the particular
structure of a website. On the other hand, some websites contain recommendation parts, which can
also be transformed into graphs. However, as there is only one main content node for each web page,
this kind of part containing less information with shorter text length should not be regarded as the
main content.

Additionally, in a graph transformed by a website, the number of content nodes is far less than
that of non-content nodes. Therefore, in our proposed NBCE algorithm, we depend on the MLP

344

model to perform classification, which will be explained in detail in Section IV. And from the main
content nodes extracted from machine learning, the main content of the web page can be recovered
by using the sequences recorded in former steps.

4. Experiment

To evaluate the availability of our proposed NBCE algorithm, two experiments are conducted on the
same cybersecurity-related dataset. The first one confirms the superiority of our proposed algorithm
while another is performed to select the most suitable machine learning model by applying
extensively used measures such as precision, recall and F1-score.

4.1. Dataset

To evaluate the effectiveness of our proposed method, we collected 100 web pages from 7
authoritative threat intelligence publishing platforms as the dataset. Each sample contains the source
content (HTML) of the web pages, which is then pre-processed to feed the need of the neo4j
database and finally the HTML is transformed into a graph. All the nodes that match the criterion
described in section III. are labeled as the main content nodes, the rest as non-content nodes. To
perform the 10-fold cross-validation, we then divide the dataset into 4 parts, in which 75% are for
training and the remaining for testing. In addition, traditional measures such as precision, recall, F1-
score and processing time are used to evaluate the performance of the classifiers.

4.2. Experimental Design

To further illustrate the advantages of our proposed method NBCE, another extensively used method
VIPS described in [4] is performed on the same dataset for comparison. Different from our method,
this method is based on vision and text leafs ratio. In VIPS method, the web page is initially divided
into several blocks according to its visual content. Then in each block, the ratio of text nodes and leaf
nodes is calculated to decide whether the given block is the main content or not. And the algorithm is
regarded as effective only when the extracted content covers 95% of the manually selected main
content. The comparison is conducted in terms of precision and processing time.

Another experiment is designed to evaluate the superiority of the chosen MLP classifier. By
comparing with some other classifiers such as SVM and Naïve Bayes in terms of precision, recall
and F1-score, the most suitable one is chosen.

4.3. Experimental Result

We use three-quarters of the dataset as the training set and the rest as the testing set to perform 10-
fold cross-validation. The practiced model is then used to extract the main content of a given web
page. Table 1 displays the extracting result of our proposed method and vision-based method VIPS
[4]. The result includes the precision rate and the average cost of time for each web page.

As we can see from the experimental results, our proposed NBCE method has a better
performance in terms of precision. Although it’s at the cost of processing time, the precision of our
method is 7% higher than the old one.

Table 1: The result of the proposed algorithm and VIPS.

 Precision Cost of time
NBCE 93% 617ms
VIPS 86% 425ms

345

Table 2: The performance of different classifiers.

Models Precision Recall F1-score
MLP 92% 78% 84%
SVM 70% 84% 76%

Naïve Bayes 50% 32% 39%

However, in task-oriented corporations, precision is of more importance than processing time. In

our method, the precision is up to 93%, 7% higher than the old one whereas the delay is no more
than 200ms. Therefore, this degree of delay is comparatively acceptable.

As to the performance of different classification models. Table 2 enlightens the gap between three
classifiers in the given scenario. As we can see from the results, the precision of MLP is up to 92%,
outperforming SVM and Naïve Bayes. Besides, the F1-score of MLP is also 8% and 45% higher
than SVM and Naïve Bayes respectively. Therefore, we can conclude that MLP is the most suitable
one among the three classifiers to extract the main content of a web page in the given scenario. The
possible reason is that MLP is characterized by its fast convergence in small-size datasets.
Additionally, we make an assumption that the limitation of our dataset may also have an influence.
That is to say, when applied in larger datasets, other models may have better performance.

5. Conclusions

In this paper, we have proposed a method named NBCE to extract main content from threat
intelligence web pages based on graph database neo4j. It makes full use of the tree structure of
HTML and transforms the HTML source code into a graph based on neo4j database. Regarding the
problem of main content extraction as a binary classification problem, several features are combined
to decide whether a node is a content node or not. A set of experiments show that our method
achieves competitive results on threat intelligence dataset, reaching 93% in precision. The results
also reflect that in terms of classification models, the MLP model outperforms other traditional
models in the main content extraction task. With the high precision in threat intelligence, we suggest
that when applied in other particular websites such as pharmaceuticals sites, our NBCE algorithm
will also have good performance. Future work could be done on expanding the dataset as well as
improving its performance in terms of efficiency.

References

[1] Alarte, J., Insa, D., Silva, J., Tamarit, S.: Site-level web template extraction based on DOM analysis. In: Mazzara,
M., Voronkov, A. (eds.) PSI 2015. LNCS, vol. 9609, pp. 36–49. Springer, Cham (2016).

[2] Bar-Yossef, Z., Rajagopalan, S.: Template detection via data mining and its appli- cations. In: Proceedings of the
11th International Conference on World Wide Web (WWW 2002), pp. 580–591. ACM, New York (2002).

[3] C. Kohlsch¨utter, P. Fankhauser, and W. Nejdl, “Boilerplate detection using shallow text features,” in Proceedings
ofthe third ACM international conference on Web search and data mining - WSDM ’10, 2010, p. 441.

[4] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma, “Extracting Content Structure for Web Pages Based on Visual
Representation,” Proceedings of the 5th Asia-Pacific web conference on Web technologies and applications, pp.
406–417, 2003.

[5] Ferraresi, A., Zanchetta, E., Baroni, M., Bernardini, S.: Introducing and evaluating ukWaC, a very large web-
derived corpus of English. In: Proceedings of the 4th Web as Corpus Workshop (WAC-4), pp. 47–54 (2008).

[6] Insa, D., Silva, J., Tamarit, S.: Using the words/leafs ratio in the DOM tree for content extraction. J. Log. Algebr.
Program. 82(8), 311–325 (2013).

[7] Li, K., Wen, H., Li, H., Zhu, H. and Sun, Limin. (2018). Security OSIF: Toward Automatic Discovery and Analysis
of Event Based Cyber Threat Intelligence. 741-747. 10.1109/SmartWorld.2018.00142.

[8] Liao, X., Yuan, K., Wang, X. F., Li, Z., & Beyah, R.. (2016). Acing the IOC Game: Toward Automatic Discovery
and Analysis of Open-Source Cyber Threat Intelligence. the 2016 ACM SIGSAC Conference. ACM.

346

[9] R. Burget and I. Rudolfova, “Web Page Element Classification Based on Visual Features,” 2009 First Asian
Conference on Intelligent Information and Database Systems, pp. 67–72, 2009.

[10] R. Kreuzer, J. Hage, and A. Feelders, “A quantitative comparison of semantic web page segmentation
approaches,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 9114, 2015, pp. 374–391.

[11] Umara Noor, Zahid Anwar, Asad Waqar Malik, Sharifullah Khan, Shahzad Saleem, “A machine learning
framework for investigating data breaches based on semantic analysis of adversary’s attack patterns in threat
intelligence repositories,” Future Generation Computer Systems, vol. 95, pp. 467-487, 2019.

[12] W. Liu, X. Meng, and W. Meng, “ViDE: A vision-based approach for deep web data extraction,” IEEE
Transactions on Knowledge and Data Engineering, vol. 22, no. 3, pp. 447–460, 2010.

[13] Weninger, T., Henry Hsu, W., Han, J.: CETR: Content Extraction via Tag Ratios. In: Rappa, M., Jones, P., Freire,
J., Chakrabarti, S. (eds.) Proceedings of the 19th International Conference on World Wide Web (WWW 2010), pp.
971–980. ACM, April 2010.

[14] Wu, S., Liu, J., Fan, J.: Automatic web content extraction by combination of learning and grouping. In:
Proceedings of the 24th International Conference on World Wide Web, WWW 2015, pp. 1264–1274. International
World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland (2015).

[15] Yi, L., Liu, B., Li, X.: Eliminating noisy information in web pages for data mining. In: Proceedings of the 9th ACM
SIGKDD International Conference on Knowledge Discovery and Data mining (KDD 2003), pp. 296–305. ACM,
New York (2003).

347

